Global existence and decay for the semilinear thermoelastic contact problem
نویسندگان
چکیده
منابع مشابه
Global Existence and Exponential Decay for a Dynamic Contact Problem of Thermoelastic Timoshenko Beam with Second Sound
In this paper, we study the global existence and exponential decay for a dynamic contact problem between a Timoshenko beam with second sound and two rigid obstacles, of which the heat flux is given by Cattaneo’s law instead of the usual Fourier’s law. The main difficulties arise from the irregular boundary terms, from the low regularity of the weak solution and from the weaker dissipative effec...
متن کاملExact Global Controllability of Semilinear Thermoelastic Systems
Results of exact controllability will be reported for a semilinear thermoelastic system, with control placed in either the mechanical or thermal equation. The controlled partial differential equation (PDE) model will be considered in two cases: (i) rotational forces are present in the PDE, in which case, the underlying dynamics evince hyperbolic behavior; (ii) the rotational inertia parameter i...
متن کاملExistence of solutions to a dynamic contact problem for a thermoelastic von Kármán plate
We study a dynamic contact problem for a thermoelastic von Kármán plate vibrating against a rigid obstacle. Dynamics is described by a hyperbolic variational inequality for deflections. The plate is subjected to a perpendicular force and to a heat source. The parabolic equation for a thermal strain resultant contains the time derivative of the deflection. We formulate a weak solution of the sys...
متن کاملOptimal decay rates and global existence for a semilinear Timoshenko system with two damping effects
In this paper, we study a semilinear Timoshenko system having two damping effects. The observation that two damping effects might lead to smaller decay rates for solutions in comparison to one damping effect is rigorously proved here in providing optimality results. Moreover the global well-posedness for small data in a low regularity class is presented for a larger class of nonlinearities than...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2002
ISSN: 0022-0396
DOI: 10.1016/s0022-0396(02)00016-5